Video games have become a popular and successful industry. Enhanced graphics and life-like simulations make newer games addicting and exceedingly difficult to put the controller down. The social aspect of gaming has increased its appeal as well. Now, because of internet access, people can play along with or compete against their friends without ever having to leave the room. With the arrival of realistic interactive games, particularly on the Nintendo Wii, vast numbers of teenagers and adults alike play video games on a regular basis. My Biola Youth physics tutor was no exception, and he had the unique ability of using a popular pastime to make my studies relevant to me.

During the first quarter of my physics class, *Halo 3* was one of the hottest games on the market. I pre-ordered mine six months in advance, and my tutor described how he waited in a long line stretching around the building for the midnight release of the game. Every once in a while, during our much appreciated breaks, we would talk about various aspects of the game such as advancing to the next level or finding one of the secret treasures we were so desperately seeking, but one day Mr. Burton decided to take it a step further.

Claiming the published tests provided with our curriculum were too easy, he decided to write his own. He designed one particular problem involving actual events that occurred within *Halo 3*. It consisted of a collision in mid-air between one character jumping off of a hill and another jumping from the base of the hill. Using what we leaned about velocities, angles, and accelerations, we were instructed to calculate the total distance away from the collision the fallen victim plummeted. At first, I was not the least bit excited about doing these calculations knowing that it would take many hours of unrelenting concentration to complete the problem. As I began
to work however I found myself interested in dissecting each individual segment. I was very familiar with this particular action due to the hours I spent playing that specific video game, and so this exercise began to take on new meaning. Although it was one of the most complicated and tricky tests I have ever taken, I was able to accurately calculate each step to the final solution due to the excellent instruction of my tutor.

My Biola Youth tutor took physics beyond the books and made it fun, interesting, and relevant to me by resourcefully integrating aspects of a popular video game. For the rest of the year, I found myself thinking of new ways I could apply physics concepts to other circumstances. For example, I used the conservation of energy to figure out the true speed before the uphill turn of the Superman roller coaster at Magic Mountain; I calculated the acceleration of the elevator in my doctor’s building using translation equilibrium; and I compared the angle of instance with the angle of reflection while at my yearly optometrist visit. I successfully made the connection between the illusive abstract concepts I was learning in class to tangible concrete applications in my personal life. Thanks to Mr. Burton’s creativity, I was transformed! Now if I can only figure out a way to make a connection to Shakespeare.